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Abstract— A central challenge in Learning from Demonstra-
tion is to generate representations that are adaptable and can
generalize to unseen situations. This work proposes to learn
such a representation without using task-specific heuristics
within the context of multi-reference frame skill learning by
superimposing local skills in the global frame. Local policies
are first learned by fitting the relative skills with respect to each
frame using Gaussian Processes (GPs). Then, another GP, which
determines the relevance of each frame for every time step,
is trained in a self-supervised manner from a different batch
of demonstrations. The uncertainty quantification capability of
GPs is exploited to stabilize the local policies and to train the
frame relevance in a fully Bayesian way. We validate the method
through a dataset of multi-frame tasks generated in simulation
and on real-world experiments with a robotic manipulation
pick-and-place re-shelving task.

We evaluate the performance of our method with two
metrics: how close the generated trajectories get to each of
the task goals and the deviation between these trajectories and
test expert trajectories. According to both of these metrics,
the proposed method consistently outperforms the state-of-
the-art baseline, Task-Parameterised Gaussian Mixture Model
(TPGMM).

I. INTRODUCTION

As robots become more ubiquitous in our society, it is
necessary to easily teach them flexible skills on the fly. A
promising possibility is to use Learning from Demonstra-
tion [1] to transfer knowledge and skills to the robot since
this can allow easy programming of robots, even for non-
roboticists [2]. Although different regressors such as Gaus-
sian Mixture Models [3], Neural Networks [4], Gaussian
Processes [5], and Dynamic Movement Primitives [6] have
been proposed to learn skills with respect to the global or
object frames, determining frame relevance at each time step
is still an open challenge.

For example, Fig. I, illustrates a re-shelving task. Here,
it is natural to consider this task as composed of two parts,
grasping and shelving, one requiring the robot to reproduce
movements with respect to the object frame and the other
to the desired shelf location frame. While associating the
right frame w.r.t. which to perform generalization may appear
trivial to a human expert, it is much less so for a robot
learner. This challenge has been formalized in the context
of Learning from Demonstration in [2]. As we will discuss
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Fig. 1. In this work, we propose TPGP, a GP-based architecture to learn
by demonstration tasks composed of multiple sub-tasks, like grasping and
re-shelving objects. The two panels show two such executions.

more in detail in Sec. II, this challenge is often solved by
introducing ad hoc heuristics or by explicitly labeling to
identify which frame is relevant at each time step. However,
labeling is impractical when dealing with non-expert human
teachers or with many frames, and task-specific heuristics are
not flexible. A method to generate self-supervised relevance
determination of each frame, directly inferred from the
demonstrations, forgoes the need for labeling and increases
flexibility.

For this reason, we propose Task-Parameterised Gaussian
Processes (TPGP), a method for learning skills parameterized
by given coordinate reference frames. This method con-
tributes to the topic of teaching multi-reference frame skills
without using any supervised segmentation algorithm or task-
specific heuristics for the reference frame selection. At every
time step, local policies output desirable movement relative
to each frame while a relevance model selects the most likely
frame. This method uses Gaussian processes to capture and
reject uncertainties in the learned local dynamics and resolve
ambiguities in weighing the frames’ relevance.

The performance of TPGP is also compared to another
self-supervised, heuristic- and segmentation-free state-of-the-
art method, Task-parameterized Gaussian Mixture Models
(TPGMM) [7], [8]. In this comparison, we show better
performance of TPGP through a metric that quantifies how
close the generated trajectories get to the goals and through
a metric that quantifies the trajectories’ deviations from test
expert trajectories.
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II. RELATED WORK

When learning a multi-reference frame policy, there are
usually two approaches. The first is to segment the trajectory
into many sub-motions and then find the most relevant frame
for each of them. Alternatively, rather than relying on a
segmentation algorithm, other algorithms solve the allocation
problem for each time step in a continuous way.

In object manipulation tasks, segmentation of demonstra-
tions often relies on changes in “contact relations” observed
through end-effector distance to relevant objects or haptic
signals. This object-centred approach aids generalization
when the objects are in new configurations. For instance, [9]
propose a hierarchical segmentation where they first segment
based on changing contact relations, and then segment further
based on acceleration profiles.

Another work analyses contact relations in human-
provided demonstrations, considering hand-object relations
again through proximity to objects, and additionally using
hand velocity correlation to avoid false positives [10]. Seg-
ments generated with end-effector distance from an object
can also be used as primitives in performing hierarchical
reinforcement learning [11].

A threshold on the measured force magnitude at the end-
effector and zero-velocity crossing events can be used as
heuristics to perform segmentation [12]. Then, the relevant
frame for each group of segments is obtained by selecting the
frame that has the most consistent converging behaviour with
respect to itself. Similarly, Directional Normal Distributions
can be used as a way to measure the convergence and to
group segments while also assigning frames to them [13].

While these methods show successful experimental valida-
tion, reliance on task-specific heuristics limits their flexibil-
ity. For tasks that are not necessarily object-centric, or even
for objects of different dimensions if distance thresholds are
used, these methods might not generalize well. The methods
proposed in [14] and [15] exploit the variance in the data
to identify important task constraints. Nonetheless, they still
require an empirically set threshold to perform their variance-
based segmentation. This is, again, task-specific and thus
limits the flexibility of the method.

The approach in [7], [8], Task-parameterized Gaussian
Mixture Models (TPGMM), is an exception since it does
not use heuristics or pre-segmentation when learning multi-
reference frame skills. The approach first transforms the
demonstrated trajectories to all potentially relevant frames
and then encodes each of these using Gaussian Mixture
Models (GMMs). Then, in a new configuration, each of these
Gaussians can be linearly transformed according to the new
position of their corresponding frame. The resulting GMM
for this situation can then be computed as the product of the
transformed models, exploiting the fact that the product of
two Gaussians is still a Gaussian.

Other non-probabilistic self-supervised frame relevance
learning methods have been proposed in [16] and [17], where
the relevance was obtained as a least-square optimization.
However, [17] did not scale to more than two frames without
the use of heuristics.

Since TPGMM is the only other comparable state-of-
the-art method that is also probabilistic, heuristic-free and
segmentation-free, we provide a comparison of the per-
formance of TPGP and TPGMM. Through a metric that
quantifies the deviation from the goals of a given task at each
frame and the Fréchet distance between demonstrations and
reproductions, we show that TPGP outperforms TPGMM.

III. METHODOLOGY

The core idea of our approach is to transform the demon-
stration data to the local reference frames to encode the
relative dynamics, and then use a self-supervised approach
to train a frame relevance predictor that selects the most
relevant frame during execution. A diagram showing the
main steps of the proposed method is shown in Fig. 2. Each
of these steps is explained in detail in Section III-B, Section
III-C, and Section III-D, respectively.

A. Demonstration Recording

During the recording of a demonstration, the 2D/3D posi-
tion of the agent, e.g., the robot, is recorded. Each recorded
position is augmented with a progress value φ between 0
and 1, calculated as the index of that datapoint divided by
the total number of datapoints for that demonstration.

The state x of the system is thus composed of the Carte-
sian position ξ (2D or 3D) and the progress value φ, i.e.,
x := [ξ, φ]. A set of l sequential states x define a
demonstration dn = {xn,0, . . . ,xn,l}, where the subscript n
denotes the n-th demonstration. The set of all given training
demonstrations is then D(0) = {0d0, . . . ,

0dN}, where we
add the superscript to indicate this is in the fixed, global
(0th) frame, and N is the total number of demonstrations.

Moreover, before each demonstration, the positions and
orientations of any relevant frames (relative to the fixed
frame) are also recorded. For each frame m we can then
construct a translation vector mt and rotation matrix mR,
and transform any datapoint 0xn,i from frame 0 to frame m:

mH =

[
mR 0
0 1

]
(1)

mxn,i =

[
mt
0

]
+ mH 0xn,i. (2)

Every demonstration 0dn in D(0) can then be trans-
formed, resulting in M transformed demonstration sets
D(1), . . . ,D(M). Note that in the transformation operation,
we do not need to rotate or translate the progress variable.
These sets, plus the original set in the fixed frame, are then
the input to the proposed method. The final result is a policy
that takes as input the current positions relative to each
frame and the current progress value φ, and outputs a desired
change in the state ∆x.
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B. Alignment of demonstrations

To successfully use the progress value in the state to learn
the local policies, the demonstrations should first be aligned.
An effective method that is commonly used for alignment
is Dynamic Time Warping (DTW) [18]. However, in this
case, trying to align all points between two demonstrations
results in bad alignments, since the trajectories are not only
dissimilar in timing but also in space.

Our assumption when performing the alignment is that in
each of the local frames, the closest point in space must have
happened at the same (normalized) time.

To find this alignment, for each ith demonstration in a set
D(m), we find the index h of the closest point mxi,· to every
other element of other demonstrations mxj,·, i.e.,

mAij = arg min
h

∥mxi,h − mxj,·∥ (3)

and the corresponding progress value at that index, i.e.,
mBij = φi,Aij

. (4)

We can now define the keypoint progress value for demon-
stration i in frame m as the middle progress value of the
closest points to any other demonstration, i.e.,

Pim = median (mBi·) . (5)

The keypoints corresponding to each of these demonstrations
and frames are visualized in the global frame in Fig. 4a.
With a total of M frames, we will thus have M keypoints
per demonstration.

By resampling each demonstration, we enforce that the
keypoints found in frame m are aligned to the same progress
value, as shown in Fig. 4b. This results in the aligned
demonstration sets D(0∗), which can again be transformed
to get D(1∗), . . . , D(m∗).

C. Training the local policies

Local policies are encoded as a dynamical system,

∆x = f(x). (6)

The state x could have been represented using only position
ξ, or a combination of position and the progress value.
Using only position could be advantageous since it means
time misalignment of the demonstrations is not a problem.
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Fig. 3. Found keypoints for 5 example demonstrations and the resulting
alignment. Only the x-coordinate is shown.

However, overlapping demonstrations in space can then
introduce ambiguity in the training labels. Moreover, it would
not be possible to teach picking skills where the robot needs
to stop during the skill.

Thus, both Cartesian position ξ and a time-encoding vari-
able were included in the state, i.e. x := [ξ, φ]. Specifically,
a progress variable φ is used, which is the time normalized
by the total time length of each demonstration, meaning
0 ≤ φ ≤ 1.

The local policies are encoded using Gaussian Processes
Regression [19], which allows us to have a quantification of
uncertainties on the predictions, i.e.,

f(x) ∼ GP(0, k(x,x′)) (7)

where k(x,x′) is chosen to be a Matérn kernel and the mean



prior is the zero. When dragging the robot far away from
labeled states, the agent will not update its time belief and
will not move in any direction.

To find the posterior distribution we can use Bayes’
theorem given the evidence of our data. However, since we
are dealing with a (possibly) big dataset of demonstrations,
the computation of the posterior becomes intractable. Hence,
a variational approximation of the posterior distribution,

q(u) = N (u|m,S), (8)

is used, where u is a set of inducing variables that are
located in Z and are distributed as a multivariate Gaussian
with mean m and covariance S. All the parameters of the
variational distribution are fitted by maximizing the expected
lower bound (ELBO) of the true log marginal likelihood of
our label, see [20].

The predictive distribution f∗ on a test point X∗ is

p(f∗) :=

∫
p(f∗|u)q(u)du. (9)

Then, considering that p(f∗,u) is a joint multivariate nor-
mal1, the result of the integral has a closed form, i.e.,

p(f∗) = N (Am,K(X∗,X∗) + A(S −K(Z,Z))A⊤)
(10)

where A = K(X∗,Z)K(Z,Z)−1. Given that we are mod-
elling a multi-input multi-output dynamical system, every
prediction returns the mean and variance of the desired
state transition p(∆xi) = N (µi, σ

2
i ). The total variance

is computed as σ2(x) =
∑

i σ
2
i (x) given each of the i-th

Cartesian output transitions.
If we consider the total uncertainty σ(x2) as a quantifi-

cation of the potential risk, we then seek to modify the
autonomous dynamics to attract the system into regions of
minimum risk. By adding the term

∆ξriski = −βσi(x)
∇iσ

2(x)

∥∇σ2(x)∥ .

to each of the Cartesian transitions, we are attracting the
autonomous system towards regions of minimum uncertainty
with a step that is proportional to the standard deviation of
each of the predictions. From an active inference perspective
[21], this term tries to minimize the surprise associated
with the belief and realizes action that would reject surprise
proportionally to the surprise itself.

When dragging the dynamics outside the region of the
demonstration, the standard deviation (std) prediction σi

converges to the prior std, and for well-calibrated prior
uncertainties, we know that

Pr(−2σprior
i < ∆si(x) < 2σprior

i ) ≃ 0.96,∀x ∈X

hence, by choosing β equal to 2, we are creating an attracting
field that is calibrated, i.e. has similar energy to the learned
dynamical systems and becomes predominant in regions
where the dynamical system prediction converges to the

1given the assumption that p(f , u) is a joint multivariate Gaussian
distribution obtained from the Gaussian Process prior
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Fig. 4. Streamplot regressed with a Variational Gaussian Process given the
red demonstrations.

prior. The authors of [5] and [22] showed how the variance
minimization term is beneficial since it helps the robotic
manipulator reject disturbances that might otherwise lead the
robot to areas of high uncertainty, which could ultimately
cause the robot to fail in performing its task due to out-of-
distribution compounding errors.

Fig. 4 illustrates the vector field of the learned dynamics
with and without uncertainty minimization in reproducing the
dynamics of drawing a letter “G” from the LASA dataset
[3]. The Figure also highlights that the extra terms act as
a stabilization term [4], [3], [23], by correcting learned
diverging behaviours at the start of the demonstrations.

D. Self-Supervised Training of the Frame Relevance GP

Another Gaussian Process is regressed to determine the
frame relevance as a function of the progress, φ,

α ∼ GP(0, k(φ, φ′)). (11)

However, as explained in the introduction, one of the goals
of this method is to learn such a task without having to
generate labels for the frame relevance in a supervised way.
Given the local dynamics learned with respect to each of the
frames, the frame relevance is regressed indirectly by using
a new set of demonstrations that the local GPs have not been
trained with. Each of the (trained) local GPs is then used to
predict the local transition probability.

These predictions from the trained local GP policies are
transformed to the global fixed frame using the transform
mH and weighted by each frame relevance. The likelihood
of the relevance prediction is set as a softmax likelihood to
ensure that the sum of weights predicted for each frame is not
larger than one. The weighted sum of predicted transitions
for each point in the demonstration is still Gaussian, i.e.,

p(0f i) = N (0µi,
0Σi) (12)

where

0µi =
M∑

m=1

mαi
m
H−1 mµi(

mxi) (13)

0Σi =
M∑

m=1

mαi
m
H−1 mΣi(

mxi)
mH. (14)



Given the recorded desired transition, 0∆x, we can maxi-
mize the likelihood of each of the label transitions to belong
to the predicted distribution p(0f i), i.e.

p(0∆x | 0f) =

nd∏
i

p(0∆xi | 0f i). (15)

The likelihood maximization indirectly trains the variational
distribution of the frame relevance GP such that the su-
perposition of the local predicted distribution matches the
distribution of the demonstrations. The optimization tries to
find the parameters that would match the mean prediction
while minimizing the total uncertainty of the prediction at
each step, preferring the selection of the most confident (and
correct!) local policy over the others.

IV. EXPERIMENTAL SIMULATION RESULTS

During each demonstration, the agent’s position and
the initial position of any relevant coordinate frames are
recorded. The simulation experiments are recorded through
a 2D “drawing” interface where the demonstrations are
given using a mouse. As a first performance metric we
use the average of the minimum distances to each goal in
the generated reproductions. The second performance metric
is the average Fréchet distance [24] between the generated
trajectories and the given demonstrations in the training case,
and in the test cases we compare the generated trajectories
to automatically generated expert trajectories.

When comparing the proposed model to other models,
the Mann-Whitney U test is used to check whether the
results from which the average metrics are calculated differ
significantly. A threshold p-value of 0.05 is used, and metrics
where the U test succeeded are highlighted in bold in the
tables.

TPGP is trained on ten demonstrations for the two-frame
task, where the origin of frame one is first approached, and
then the origin of frame two is approached. Fig. 5 shows
some example demonstrations for the same task, but with an
additional third frame instead of only two.

The full model is tested on the ten training configurations
and five test configurations for the two-frame task, both with
and without variance minimization. Table I summarizes the
results and highlights how the model with variance mini-
mization performs better in almost every metric. Note also
how, in the case where the model with variance minimization
performed worse (average Fréchet distance for the test case),
the difference in the results was not significant according to
the Mann-Whitney U test.

A. Comparison with TPGMM

To evaluate the proposed method, its performance is
compared to that of the state-of-the-art TPGMM algorithm
[8], [25]. As mentioned in Section II, TPGMM fits GMMs
on the data transformed to each of the relevant frames.
Then at execution time, these can be transformed to the new
configuration of the frames and multiplied together to find the
new GMM for this configuration. Specifically, the resulting

TABLE I
PERFORMANCE METRICS FOR TPGP WITH AND WITHOUT VARIANCE

MINIMIZATION FOR THE TWO FRAME TASK. BOLD VALUES INDICATE

THAT THE VALUES USED TO CALCULATE THE AVERAGE WERE

SIGNIFICANTLY LOWER ACCORDING TO THE MANN-WHITNEY U TEST.

Average
distance
to goal 1

[-]

Average
distance
to goal 2

[-]

Average
Fréchet
distance

[-]
train test train test train test

TPGP w/o
var. min. 0.64 0.68 3.03 7.36 5.93 10.08

TPGP with
var. min. 0.18 0.25 0.59 0.58 4.76 14.12

TABLE II
PERFORMANCE METRICS FOR TPGP AND TPGMM FOR THE TWO

FRAME TASK. BOLD VALUES INDICATE THAT THE VALUES USED TO

CALCULATE THE AVERAGE WERE SIGNIFICANTLY LOWER ACCORDING

TO THE MANN-WHITNEY U TEST.

Average
distance
to goal 1

[-]

Average
distance
to goal 2

[-]

Average
Fréchet
distance

[-]
train test train test train test

TPGMM 0.20 0.27 0.17 0.14 5.51 10.64
TPGP (Ours) 0.38 0.29 0.08 0.08 3.85 8.00

TPGMM [26]2 is used to approximate a Hidden Markov
Model (HMM). At execution time, the Viterbi algorithm
is used to determine the most likely sequence of hidden
states from a training demonstration, where each of these
states corresponds to one of the Gaussian components of the
GMM, and a linear-quadratic regulator (LQR) is employed to
track the generated trajectories. Thus note that this version of
TPGMM requires this additional sequence of states as input
during execution, whereas TPGP only requires the new initial
position of the frames.

Both TPGP and TPGMM are trained using 15 demon-
strations, and then tested on 100 randomly generated test
configurations. Table II shows the results for the two frame
task, where for both the training and test frame configura-
tions, TPGP performs better than TPGMM in four out of the
six given metrics.

Similarly, for the three frame task, the results shown in
Table III show that TPGP outperforms TPGMM in almost
all the metrics. Fig. 5 shows example demonstrations along
with the generated reproductions by TPGP and TPGMM,
where the colors for the TPGP trajectory visually indicate the
predicted frames’ relevance. The relevance weights predicted
by the frame relevance GP for this task are also visualized in
Fig. 7, which indeed shows the desired switching behaviour
in the correct order.

The top-left and bottom-left plots in Fig. 5 show how
TPGMM sometimes deviates from the demonstrations, which

2An implementation can be found at https://gitlab.idiap.ch/
rli/pbdlib-python/-/blob/master/notebooks/pbdlib%
20-%20Multiple%20coordinate%20systems.ipynb?ref_
type=heads
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explains its worse Fréchet score. Fig. 6 also shows examples
of generated trajectories for randomly generated test config-
urations.

V. VALIDATION ON A ROBOTIC MANIPULATOR

TPGP is also tested and validated using a 7-degree-of-
freedom Franka-Emika manipulator. Cartesian impedance
control is used to control the robot, where the end-effector is
modeled as a spring-damper system. Kinesthetic demonstra-
tions are provided by a user, and the recorded end-effector
position is used as the input data.

At execution time, TPGP is used in an offline fashion:
a trajectory is first generated and then executed by the
controller as a sequence of attractors. For the re-shelving
task, it is also necessary to generate values for the orientation
and gripper commands of the end-effector. At each time step
i, the most correlated point from the training data X to the
current state xi is found. The recorded gripper value and
orientation at that most correlated training data point are then
used for the execution at that time step.

TPGP is tested on a pick-and-place re-shelving task. A
carton of milk must be picked up and then placed on a
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TABLE III
PERFORMANCE METRICS FOR TPGP AND TPGMM FOR THE THREE

FRAME TASK. BOLD VALUES INDICATE THAT THE VALUES USED TO

CALCULATE THE AVERAGE WERE SIGNIFICANTLY LOWER ACCORDING

TO THE MANN-WHITNEY U TEST.

Average
distance
to goal 1

[-]

Average
distance
to goal 2

[-]

Average
distance
to goal 3

[-]

Average
Fréchet
distance

[-]
train test train test train test train test

TPGMM 0.82 0.68 0.52 0.5 0.44 0.35 5.00 12.44
TPGP (Ours) 0.70 0.71 0.09 0.4 0.37 0.29 4.13 5.64

specific location on a shelf. Fiducial markers (AprilTags [27])
are used to localize the carton of milk and the placing goal
during demonstrations and at execution time. An image of
the setup for this task is shown in Fig. 8, where the base
frame as well as the milk (frame 1) and placing goal (frame
2) are indicated on top of the fiducial markers, and Fig. 9
shows the full task through a sequence of images.

First, 10 demonstrations of this task are recorded while
varying the position of both the object and the placing goal.
Another 5 demonstrations are recorded to be used as a
test set. Several TPGP models are then trained using four,
six, and eight randomly chosen demonstrations out of the
training demonstrations, and their performance is compared
to a model trained with the complete dataset.

The results are shown in Table IV, where the same
performance metrics explained in Section IV are used. Ad-
ditionally, each of the models is used to try and complete
the task for 10 new configurations, and the success rate is
reported in the last column. As expected, the metrics improve
as the number of demonstrations increases, especially the
success rate.

To show the utility of the variance minimization in the

TABLE IV
PERFORMANCE METRICS FOR TPGP TRAINED WITH AN INCREASING

NUMBER OF DEMONSTRATIONS.

Average
distance
to goal 1

[cm]

Average
distance
to goal 2

[cm]

Average
Fréchet
distance

[cm]

Task
success

rate
[-]

train test train test train test
4 Demos 1.0 1.2 2.4 3.1 10.2 20.5 50%
6 Demos 0.9 3.7 1.3 1.2 5.6 17.3 70%
8 Demos 0.5 3.8 1.2 2.5 8.3 10.6 80%
10 Demos 1.0 3.5 1.2 2.5 7.0 10.0 100%
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Fig. 8. Robotic setup for the re-shelving task, with visualizations of the
base frame (0), the object frame (1), and the goal frame (2).

TABLE V
PERFORMANCE METRICS FOR TPGP WITHOUT VARIANCE

MINIMIZATION TRAINED ON 4 AND 10 DEMONSTRATIONS.

Average
distance
to goal 1

[cm]

Average
distance
to goal 2

[cm]

Average
Fréchet
distance

[cm]

Task
success

rate
[-]

train test train test train test
4 Demos w/o

var. min. 1.2 6.8 3.0 6.1 8.6 22.4 10%

10 Demos w/o
var. min. 1.0 4.0 1.3 1.3 11.0 20.0 80%

local policies, we additionally test the performance of TPGP
without this feature, trained on 4 and 10 demonstrations.
Comparing these results shown in Table V with the results
of the full model in Table IV, it is clear that the variance min-
imization improves the performance of the task. Note how it
is especially helpful in the case with only 4 demonstrations,
where task success rate improves from 10% to 50%.

Finally, we also present a comparison of the generated
trajectories by TPGP and TPGMM for the robotic re-shelving
task in Table VI. While they produce very similar results
for the first metric, TPGP again scores better in the Fréchet
distance. An example of the generated trajectories by each
of the methods for a training configuration is also shown
in Fig. 10. This Figure shows how TPGMM deviates from
the demonstration when it approaches both frames, which
explains its lower Fréchet distance scores.

VI. CONCLUSIONS AND FUTURE WORK

The presented method, TPGP, learns multi-reference frame
skills directly from demonstration, without using task-
specific heuristics or training labels on the frames’ relevance.
Local policies encode the dynamics relative to each frame,
and a self-supervised approach is used to train the frame
relevance GP which determines the frame relevance at each
time step, to then select from the local policies. For both
simulation and robotic re-shelving task experiments, TPGP
is compared with the performance of another segmentation-

TABLE VI
PERFORMANCE METRICS FOR TPGP AND TPGMM FOR PICK AND

PLACE TASK. BOLD VALUES INDICATE THAT THE VALUES USED TO

CALCULATE THE AVERAGE WERE SIGNIFICANTLY LOWER ACCORDING

TO THE MANN-WHITNEY U TEST.

Average
distance
to goal 1

[cm]

Average
distance
to goal 2

[cm]

Average
Fréchet
distance

[cm]
train test train test train test

TPGMM 0.6 4.4 0.6 1.0 13.2 12.4
TPGP (Ours) 0.8 4.7 1.0 1.3 8.9 9.7

and heuristic-free model, TPGMM. In both cases, the TPGP
model shows better performance. The distance to the task
goals and the Frechét distance for demonstration reproduc-
tions are both smaller than for TPGMM.

A limitation inherent to TPGP (but also to TPGMM) is the
need for diverse demonstrations. If several demonstrations
are given but the configurations of the frames are very similar
among these demonstrations, the model will fail to generalize
to new configurations. A related issue is that a demonstrator
might not know how to ensure the demonstrations and
configurations are diverse. Thus a possible extension would
be to integrate TPGP in an incremental learning framework,
where additional training can easily be provided. An active
learning element would go a step further, where the algorithm
can request additional training data, potentially making use
of the uncertainty quantification of Gaussian Processes.
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[22] A. Mészáros, G. Franzese, and J. Kober, “Learning to Pick at Non-
Zero-Velocity From Interactive Demonstrations,” IEEE Robotics and
Automation Letters, vol. 7, no. 3, pp. 6052–6059, 2022.

[23] N. Figueroa and A. Billard, “Locally active globally stable dynam-
ical systems: Theory, learning, and experiments,” The International
Journal of Robotics Research, vol. 41, no. 3, pp. 312–347, 2022.

[24] T. Eiter and H. Mannila, “Computing discrete Fréchet distance,” Tech.
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