
Tactile-based Self-supervised Pose Estimation
for Robust Grasping

Padmaja Kulkarni, Jens Kober, and Robert Babuska

Abstract
We consider the problem of estimating an object’s pose in the absence of visual

feedback after contact with robotic fingers during grasping has been made. Infor-
mation about the object’s pose facilitates precise placement of the object after a
successful grasp. If the grasp fails, then knowing the pose of the object after the
grasping attempt is made can also help re-grasp the object. We develop a data-driven
approach using tactile data that computes the object pose in a self-supervised manner
after the object-finger contact is established. Additionally, we evaluate the effects of
various feature representations, machine learning algorithms, and object properties
on the pose estimation accuracy. Unlike other existing approaches, our method does
not require any prior knowledge about the object and does not make any assumptions
about grasp stability. In experiments, we show that our approach can estimate object
poses with at least 2 cm translational and 20 degrees rotational accuracy despite
changed object properties and unsuccessful grasps.

1 Introduction

Touch is a prime human sense, which enables humans to grasp in dynamic environ-
ments with low lighting, occlusions, and shadows. Similarly, for robot hands, the use
of tactile information has proven to be essential for grasping [1–4]. In prior works,
tactile information was used to estimate object properties, object-classes, and grasp
stability [1–4]. This interpretation aids in the determination of, for example, grasping
strategy or contact-force computation. However, it adds little insight into the pose of
an object after robot-object interaction happens.

Not being able to have reliable object pose detection after the robot-fingers are
in contact with the object is one of the major reasons for the still moderate grasping
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performance of robot hands [5–7]. When fingers make contact with an object, the
force applied by them can cause the object’s location to change. Furthermore, it may
no longer be possible to use a camera to monitor the object’s pose in hand due to
occlusion. Knowing this pose helps to place the object precisely after picking it up
or to re-grasp if the grasp fails. Thus having a method for reliable in-hand object
pose estimate is essential.

In this paper, we address the problem of estimating object pose, especially when
visual feedback is not possible during or after the grasp. We develop a data-driven
approach based on tactile data to estimate an object’s pose (position and orientation)
relative to the robotic gripper.

Tactile sensors provide only local information about the object in contact, whereas
vision sensors provide extensive environmental information. Hence, to simplify the
problem of object pose estimation with tactile sensors, either assumptions like grasp
stability or known object properties (e.g., mesh-model, geometry) are made, or the
object is fixed to restrict itsmotion under gripper forces. For example, Bimbo et al. [8]
estimated the object’s pose in a robotic gripper using tactile and force data assuming
the object’s model or geometrical information is accurately known. They minimized
the difference of angles between the normals on the object’s surface obtained from
the geometric model and the observed force-normals to estimate the object’s pose
using evolutionary algorithms. Corcoran et al. [9] used a particle filter to estimate
object pose in the robot gripper. The authors’ model computed the likelihood of
true contact measurement over possible contact positions, assuming a known object
model. The approaches in [10,11] used haptic exploration for object pose prediction
with tactile data for a fixed object and assumed the object model to be known. The
authors of [5] computed the object’s pose with data-driven techniques, using an
under-actuated robotic gripper and assuming a stable grasp.

In contrast to these approaches, our paper focuses on directly estimating the object
pose based on tactile data without making any assumptions about the object model
or grasp stability, and without fixing the object. Furthermore, in the training phase,
we use a camera to estimate the ground truth object pose, and thereby generate the
target object pose in a self-supervised manner. Note that, for the trained model, the
camera is only used to estimate the initial object-pose and it is not used thereafter
during or after the grasp attempt. The initial object pose facilitates the estimation of
changes in the object pose, especially for the symmetric objects, as tactile sensing
would not discriminate if the object were rotated by, for example, 180◦ degrees.

This paper’s contribution is two-fold: i) a novel approach for computing Tactile-
based Self-supervised Pose Estimation (T-SPoE), and ii) evaluation of the effect of
various feature representations, machine learning algorithms, and changing object
properties on the accuracy of the pose estimation.
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Fig. 1 Data collection with T-SPoE method. Data is recorded continuously during each grasp
attempt, and the labels are generated in a self-supervised manner.

2 Tactile-based Self-supervised Pose Estimation

T-SPoE estimates the object pose based on tactile data. It consists of the following
three phases:

1. Data Collection:
Figure 1 shows our data collection approach. We use a gripper equipped with
tactile sensors and design an experimental setup allowing object grasping. We
use a camera to estimate the target object pose in a self-supervised manner. The
gripper is in the open position and tries to grasp the object until it is successful
(shown in Fig. 2) and then places the object at the same place. During this phase,
we record true object pose, tactile data, and finger joint angles at each time step.
For recording the true object pose, we mount Fiducial markers on the object and
use the ArUco library [12] to compute the marker pose.

2. Model Training:
In this phase, based on the collected data, we train models to estimate the pose
using machine learning. A different model is trained for every object. The tactile
data is preprocessed to obtain data-representations explained in Section 3. The
input to the model is the preprocessed tactile data, the finger joint angles, and the
object’s pose before grasping (initial object pose). The output of the model is the
6D object pose relative to the gripper.

3. Pose Estimate:
In this phase,we process the current tactile data frame to obtain data-representations,
as explained in Section 3. We then use the processed tactile data frame as input
to the trained model to predict the object pose.
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Fig. 2 Setup for collecting data. Two fingers of the SDH hand are used to grasp an object. The
Asus Xtion PRO camera tracks the marker positions continuously during grasp attempts.

3 Feature Representations

To train themodel usingmachine learning, we use tactile data, finger joint angles, and
initial object pose as input features. The initial object pose is a 6D vector representing
the initial object pose with respect to the hand, and it is estimated using a camera.
The object pose consists of the 3D Cartesian position and three roll, pitch and yaw
Euler angles with -./ version. We use two fingers of the Schunk Dexterous Hand
(SDH),1 which have in total four degrees of freedom. Along with this 10D vector, we
use the tactile data from two fingertips of the SDH hand. Each fingertip is equipped
with a Weiss Tactile pad with 13×6, i.e., 78 taxels. These total of 156 taxels output
pressure at the fingertips, which we use as our tactile input.

The tactile feature length of 156 is large and could be potentially redundant. To
reduce the dimensionality, along with raw tactile-values, we use the following feature
representations and train three different machine learning models per technique:

1. Tactile Data as a List:
Here, we use tactile data as a list, where one data point has a dimension of 156×1,
and the input feature vector has a total dimension of 166.

2. Max-pooled Tactile Data:
We use this operation to reduce the dimensionality of tactile data, with a rect-
angular filter of size 1 × 6 and stride 1. This entails that we take the maximum
tactile value from each taxel row. As there are 13 rows, we reduce the dimensions
to 13 × 1 for one finger. The input tactile feature vector, in this case, has a total
dimension of 13 × 2 = 26.

3. Principal Component Analysis (PCA):
Here, we take co-variance (�) of # tactile data vectors ()) [13]: � = f()1...# ).

1 https://schunk.com/nl_en/gripping-systems/series/sdh/
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The most significant feature vectors, which explain 80% of data, are computed
by computing the largest eigenvalues (_) as: a)�a = _, with a as the eigenvector
of matrix �. In our case, PCA was able to reduce the dimensions to 20 × 1.

4 Experiments

A setup for data collection is shown in Figure 2. The Asus Xtion PRO camera is
used to track the object’s relative position with respect to the SDH hand..

1. Self-supervised Data Collection:
We used two objects, a Nescafe box and a ceramic cup for data collection. The
object is kept between the hand’s open fingers such that object-finger interaction
or grasping is possible. The orientation of the object is allowed to change by 360◦
about the vertical axis. The SDH grasps the object by closing the fingers until
either the desired force value is reached or the finger joint-limits are reached. A
grasp is successful when the gripper grasps an object and fails when the object
slips out of the gripper. The objects used for the experimentation are listed in
Table 2. For training, the Nescafe box and cup is used. We record the data for
40 successful and 40 unsuccessful grasps for each object. After the training
data-collection is complete, the Nescafe box and the cup are enveloped in 1 cm
thick foam. Enveloping an object with foam changes the object’s dimensions and
surface properties, e.g., friction coefficient. The aim of experimenting with the
objects covered with foam is to evaluate if the method is robust to such property
changes. The foam-covered objects are only used for evaluation purposes and not
during training.

2. Model Training:
For model training, we use four machine learning methods; namely, i) Neural
Networks (NN), ii) Support Vector Regression (SVR), iii) K-Nearest Neighbours
(K-NN), and iv) Random Forest (RF). The parameters used for these learning
algorithms are listed in Table 1. These parameters are decided by trial and error
using the highest model score as a performance indicator across 5-fold cross-
validation. The parameter details are available in Scikit-learn library2.

Table 1 Parameters used for the evaluation of various Machine Learning Approaches.
Algorithms Parameters
NN Hidden layer sizes: (100, 75, 50, 25, 20, 10)
SVR C: 1.0, epsilon: 0.2
KNN Nearest neighbours: 3
RF Max. depth: 6

2 https://scikit-learn.org/stable/
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Table 2 Objects and their sizes used for the experimentation with SDH hand.
Objects Sizes in cm

Box 13 × 13 × 13 (h × w × l)
Cup 8 × 10 ( d × h)
Box with Foam Layer 13 × 15 × 15 (h × w × l)
Cup with Foam Layer 10 × 10 (d × h)

Table 3 RMSE in pose prediction. Translation (T-error) is in centimeters, and Rotation (R-error)
is in degrees.

Features Type NN SVR KNN RF
T-error R-error T-error R-error T-error R-error T-error R-error

Tactile data
as a list

Box grasped 0.46 1.01 0.82 0.27 0.15 0.8 0.39 1.4
Cup grasped 1.14 9.4 0.76 0.42 0.8 5.1 0.65 8.7

Box grasp failed 1.3 6.89 1.09 0.36 0.55 8.9 0.94 4.4
Cup grasp Failed 2.2 9.7 3.03 1.01 2.07 11.06 1.91 8.76

Max pooled
tactile data

Box grasped 0.79 1.9 0.8 0.26 0.66 2.6 0.59 1.60
Cup grasped 1.1 9.6 0.85 0.28 0.46 5.2 0.36 3.5

Box grasp Failed 1.3 6.2 0.97 0.32 0.6 9.5 0.8 4.2
Cup grasp failed 2.1 9.4 2.7 0.92 1.9 9.6 1.7 8.2

PCA compre-
ssed tactile
data

Box grasped 2.2 1.8 0.62 0.21 0.34 2.1 0.9 2.7
Cup grasped 1.1 8.2 0.7 1 2.5 0.79 5.6 0.70 8.5

Box grasp failed 1.7 3.1 0.74 2.4 0.6 13.34 0.69 1.69
Cup grasp Failed 2.2 8.7 2.3 0.78 1.9 10.2 1.07 8.16

5 Results and Discussion

The pose is predicted using the data collected in Phase 1 and models from Phase 2 of
T-SPoE. These results are divided into two graspmodes, depending uponwhether the
SDH hand grasped the object. According to feature representations and algorithms,
the results are listed in Table 3. We use Root Mean Square Error (RMSE) to measure
the prediction accuracy. For translational RMSE, RMS (Root Mean Square) distance
between the predicted and the target position is computed. For rotational error,
RMS error between the predicted and the target Euler angles is calculated. Here, we
could use RMS distance between angles in Euler space because we vary the object
orientation only about the vertical axis.

The average RMSE of each feature representation does not significantly vary.
Hence, we use raw tactile-values in the list form as features. The lowest average
RMSE for each feature representation is obtained by using Random Forest Regres-
sion. Therefore we use RF for the training phase for T-SPoE. The results obtained by
changing the object surface properties and deformability are listed in Table 5. Note
that when the size and deformability of an object are varied, no additional training
is performed.

We calculated the error between the initial (pre-grasp) object pose and the actual
object pose after gripper-object interaction to justify our method’s usability. This
error indicates how much the object has shifted due to the robot-object interaction.
In the case of the box in the three scenarios — box grasped, box grasp failed, and
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box with foam — this average RMSE was found to be 13.64 cm in translation and
21.67◦ in rotation. For the cup, this error was 12.80 cm and 39.43◦ in translation and
rotation, respectively. Thus this pose-shift is significant, and estimating the object
pose after contact with robotic fingers during grasping has been made is necessary
for successful manipulation.

In summary, T-SPoE can estimate pose relative to the gripper with RMSE less
than 0.5 cm in translation and 3.5◦ in the rotation when the object is successfully
grasped. When the gripper is unable to grasp an object, RMSE increases to 2 cm
in translation and 8◦ in rotation. Moreover, for object size and property changes,
T-SPoE was able to maintain the translational RMSE up to 1.9 cm. However, the
rotational RMSE increases to 20◦. This can be attributed to the fact that the finger-
object contact dynamics change significantly for deformable objects. However, this
error in pose prediction is less than the error that would occur without using T-SPoE
if the object is assumed to be at the initial pre-grasp pose. We conclude that training
with varying object-properties is required to make the method robust against the
object-property variations and to reduce the error further.

Table 4 RMSE in prediction of the pose with variations in object properties using T-SPoE. Random
Forest Algorithm is chosen, as it has the lowest average RMSE with known objects.

Objects RF
T-error (cm) R-error (deg)

Box with Foam 1.90 20.1
Cup with Foam 1.74 10.11

6 Conclusion and Future Work

We proposed a self-supervised method T-SPoE for robust grasping tasks using tactile
feedback. We evaluated self-supervised object pose prediction using data collected
from a fixed SDH hand with two known objects. Our approach does not require any
prior object knowledge and does not make any assumptions about the grasp stabil-
ity. Additionally, we evaluate the effect of various feature representations, machine
learning algorithms, and changing object properties on the proposed approach. With
the known objects, our method predicted the object pose with RMSE less than 0.5
cm in translation and 3.5◦ in the rotation when the object is successfully grasped.
With changed object properties, this error increases to 1.9 cm and 20◦ in translation
and rotation, respectively. The next step to reduce this error would be to use more
training data with changing object properties to make T-SPoE robust against object
property variations.

Furthermore, in the future, we plan to evaluate the complete manipulation pick-
and-place pipeline with more day-to-day objects of irregular natural shapes, like
lettuces, tomatoes, and chicken pieces.
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