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Abstract— This paper presents an Impedance Primitive-
augmented hierarchical reinforcement learning framework for
efficient robotic manipulation in sequential contact tasks. We
leverage this hierarchical structure to sequentially execute
behavior primitives with variable stiffness control capabilities
for contact tasks. Our proposed approach relies on three key
components: an action space enabling variable stiffness control,
an adaptive stiffness controller for dynamic stiffness adjust-
ments during primitive execution, and affordance coupling for
efficient exploration while encouraging compliance. Through
comprehensive training and evaluation, our framework learns
efficient stiffness control capabilities and demonstrates im-
provements in learning efficiency, compositionality in primitive
selection, and success rates compared to the state-of-the-art.
The training environments include block lifting, door opening,
object pushing, and surface cleaning. Real world evaluations
further confirm the framework’s sim2real capability. This work
lays the foundation for more adaptive and versatile robotic
manipulation systems, with potential applications in more
complex contact-based tasks.

I. INTRODUCTION

Realistic manipulation tasks involve a prolonged sequence
of motor skills in varying environments. For decades, the
challenge of enabling robotic manipulators to solve realistic
long-horizon tasks has persisted. While existing research
has made strides in addressing important aspects of long-
horizon tasks, a critical gap remains in the context of contact-
rich environments, highlighting a crucial area that requires
further exploration and development. An example can be
found in a common manipulation task: object sorting. A
robot should be able to plan a series of precise actions
over time while adjusting its positioning and applied forces
to accommodate objects of varying shapes and sizes while
also taking the interaction environment into consideration.
This paper focuses on the intersection of deep reinforcement
learning (DRL) and adaptive stiffness control to address this
longstanding challenge.

Prior works have extensively explored robotic manipu-
lation in long-horizon applications. Conventional methods
often use state machines [1] [2] or symbolic reasoning [3] [4]
to learn action sequences for solving a task. However, these
approaches explicitly design the decision-making sequence,
which may introduce constraints that limit adaptability to dif-
ferent tasks and contribute to error accumulation throughout
the task sequence. In response to these limitations, learn-
ing techniques such as hierarchical reinforcement learning
(HRL) [5] have been employed, establishing themselves
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Fig. 1. Figure shows the augmentation of the impedance primitive into
HRL policy.

as a common approach for problems requiring sequential
decision-making.

When deploying long-horizon frameworks in contact-rich
environments, the integration of stiffness control becomes
crucial for adapting to external forces and uncertainties
during task execution. This adaptability ensures precision and
stability in navigating contact-rich environments. However,
despite a substantial body of research dedicated to variable
stiffness control, current approaches are primarily tailored
to short-horizon applications. These methods typically in-
volve designing controllers that adjust end-point force in
response to environmental forces [6], adapting impedance
and damping parameters through learning techniques [7] [8],
and learning from a human demonstrator [9] [10].

This paper aims to bridge the gap between sequential
task planning and adaptive stiffness control using a DRL
framework. We design an HRL framework, as shown in
Figure 1, that selects a high-level action primitive from a pre-
defined library and outputs an initial estimate for controller
parameters for low-level control. During primitive execution,
an adaptive controller is initiated to optimize the robot’s
stiffness, aiming for an balance between safety (reducing
interaction forces with the environment) and performance
(ensuring task completion). This design allows the robot
to dynamically optimize stiffness parameters, enabling it
to transition between high stiffness for precision tasks and
increased compliance for enhanced adaptability. We present
experiments conducted in both simulation and the real world,
focusing on sequential tasks that deal with different contact
challenges. Our results highlight notable advantages when
compared to a state-of-the-art baseline.

The remainder of this paper is structured as follows: Sec-
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tion II discusses related work. Section III defines the problem
statement. Section IV provides necessary background and
preliminaries. Our proposed Impedance Primitive-augmented
HRL (IMP-HRL) approach is introduced in Section V.
Section VI presents experimental results and analysis. Sec-
tion VII concludes the paper with a summary of findings and
future research directions.

II. RELATED WORKS

Sequential Planning: Extensive work in task and motion
planning (TAMP) spans various robotics applications, involv-
ing explicit decision-making frameworks and machine learn-
ing for learned behavior sequences. Common approaches
employ hierarchical task planning, combining high-level
planners with low-level controllers. In robot manipulation,
this often takes the form of finite state machines [1], [11],
[12] or behavior trees [13], [14] as high-level controllers.
Similar methods use symbolic reasoning [15]–[17], repre-
senting high-level tasks and constraints with symbols. Al-
though these methods offer explainability, their pre-defined
nature limits adaptability to real-world variability, leading to
suboptimal performance. Our proposed framework addresses
this by learning the high-level planner and optimizing low-
level controller parameters for better generalization and
robustness. Recently, learning approaches have emerged to
overcome these limitations. Imitation learning (IL) is a key
candidate for sequential planning, enabling robots to learn
demonstrated behavior sequences. Behavior cloning, a well-
established IL method, has robots replicate demonstration
sequences [18]–[20], but this limits generalizability. Ad-
vanced IL methods aim to generalize learned sequences
[21]–[23], yet they still struggle to adapt to new envi-
ronments. Our framework adapts action sequences to the
environment state, addressing this limitation and mitigating
suboptimal performance from human error in demonstra-
tion data. Hierarchical Reinforcement Learning (HRL) has
gained attention for long-horizon planning. State-of-the-art
approaches like MAPLE [24], RAPS [25], and STAP [26]
train hierarchical policies to choose and execute primitives
from a behavior library. Despite handling complex tasks and
improving sample efficiency, these methods rely on static
controllers, which hinder performance in contact tasks and
pose risks in real-world settings. Our method builds on
these concepts, optimizing stiffness to maximize compliance
without compromising task success.

Variable Stiffness Control: Existing methods for adapting
the stiffness of an impedance controller typically use task-
specific impedance profiles. Common approaches include
learning from demonstration methods, such as Dynamic Mo-
tion Primitives [27]–[29] or Gaussian Mixture Models [9],
[30]. Alternatively, some methods schedule variable stiffness
gains for different task phases [31]–[33]. Despite their ease
of application, these methods struggle to generalize stiffness
profiles across tasks and depend on expert demonstrators. RL
has emerged as a promising method for learning stiffness
profiles. Some methods bootstrap the RL policy with initial
stiffness demonstrations [34]–[36] to accelerate learning,

which are then optimized for specific tasks. However, the
reliance on expert demonstrators remains an issue. Other
RL approaches focus on designing an appropriate action
space in which an agent samples impedance parameters as
actions to adapt controller behavior. For adaptive stiffness
applications, an impedance action space allows the agent to
learn stiffness and damping parameters in joint space [37]
and end-effector space [8]. Similar approaches use residual
reinforcement learning, where a policy outputs actions to
support an existing controller [1], [38], [39]. However, these
methods fail in long-horizon tasks due to their limited ability
to capture sequential dependencies.

Contributions: The main contributions of this work are
i) an impedance primitive augmented HRL framework for
sequential contact tasks, ii) a novel behavior affordance that
concurrently optimizes for position and compliance; (iii) an
adaptive controller for dynamic stiffness modifications for
optimal execution in varying environments.

III. PROBLEM STATEMENT

The long-horizon robotics manipulation task can be formu-
lated within the framework of HRL combined with Parame-
terized Action Markov Decision Processes (PAMDPs) [40].
Let S represent the state space, and πH : S → AH be the
high-level policy that selects high-level actions aH ∈ AH ,
which define primitives. For each high-level action aH ,
let πaHL : SaHL → AaHL × Θ be the corresponding low-
level policy that selects parameterized actions (aL, θ). The
overall policy π(s) = π

πH(s)
L (s) determines the hierarchical

decision-making process. The environment dynamics are
captured by the transition function P (s′|s, ā) and reward
function R(s, ā), where ā = (aL, θ). The objective is to
find the hierarchical policy π that maximizes the expected
cumulative reward J(π) = E [

∑∞
t=0 γ

trt], optimizing both
the high-level task decomposition and the execution of
parameterized actions for efficient manipulation.

IV. PRELIMINARIES: MAPLE [24]

MAPLE [24] is a state-of-the-art HRL framework that
frames the sequential decision making problem as a PAMDP.
It uses a two-level policy structure: a high-level task pol-
icy πH selects a behavior primitive from a library L =
{p1, p2, ..., pn}, while a low-level parameter policy πaHL
predicts the parameters θ for the chosen primitive. Each
primitive executes a closed-loop control sequence, minimiz-
ing the error between the current state s and the target state
θ. The primitives and their parameters are documented in
Table I.

To enhance exploration, MAPLE incorporates position af-
fordances, which are rewards that encourage interactions near
task-relevant objects. This position affordance is modeled as

apos(s, θ; p) = max
κ∈K

(
1− tanh

(
max (||θ − κ|| − τ, 0)

))
, (1)

where K represents the set of object keypoints and θ is
the chosen parameters for a primitive. Accordingly, the
affordance reward increases as it approaches objects in the
environment.



TABLE I
DESCRIPTION OF PRIMITIVES AND THEIR PARAMETERS

Primitive Description Parameters

Reach Moves the end-effector to a
target location (x, y, z)

Grasp Moves end-effector to grasp
location then activates gripper (x, y, z, ψ)

Push
Moves end-effector to a target

location, then applies a
displacement δ

(x, y, z,

δx, δy , δz)

Atomic Apply atomic action (δx, δy , δz)

Gripper Open/Close binary gripper g

MAPLE’s structured approach facilitates learning of
parameterized skills but lacks explicit mechanisms for
impedance control, which is critical for contact-rich tasks.
Our proposed IMP-HRL extends MAPLE by integrating
impedance primitives and adaptive stiffness control, enabling
more robust interaction with the environment.

V. IMP-HRL
We propose Impedance Primitive-augmented HRL (IMP-

HRL) for robust sequential contact tasks. We introduce two
components into the MAPLE framework that allow us to
to achieve variable impedance control for sequential contact
tasks.

A. Impedance Primitive

To accommodate contact-rich environments, the target
states need to be extended from exclusively position-based
parameters as in MAPLE to also include variable impedance
parameters. We propose augmenting HRL with the prim-
itive parameter action space containing the position and
impedance parameters [8]. It allows the agent to control the
impedance parameters by sampling them as actions. This
augmentation extends the parameter space, θ, to now contain
(Kx,Ky,Kz) for variable stiffness/impedance control along
different coordinate axes and Kψ for handling orientation or
angular variations (shown in Figure 1). The damping term D
in the impedance parameters are selected based on critical
damping of system’s closed loop response to reduce the
number of learnable parameters.

A limitation of this primitive representation arises from
the sequential nature of decision-making: once the policy
triggers a behavior primitive, it is required to wait for the
primitive to complete its execution before modifying the
stiffness value again. On the other hand, using an action
space with dynamically adapting stiffness parameters intro-
duces a learning challenge. Therefore, the stiffness parame-
ters predicted by the parameter policy will act as an initial
stiffness prediction which will be further adjusted using an
adaptive stiffness controller.

Affordance Coupling - Combining Position and Stiff-
ness Affordances: In the context of tasks that can benefit
from stiffness control, position-based affordances (1) are in-
sufficient since they focus exclusively on spatial information.

To address this limitation, we propose an additional stiffness
affordances to maximize compliance whenever possible. In
turn, this translates to a reduction in interaction forces
between the robot and the environment, which improves the
overall safety of the system. Accordingly, stiffness is only
increased when it is necessary to meet task requirements.
This stiffness affordance is modeled as

astiff(s, θ; p) = 1− K(s, θ; p)−Kmin

Kmax −Kmin
, (2)

where K(s, θ; p) is the selected stiffness and (Kmin,Kmax)
represent a pre-defined stiffness range in the action space. In
practice, astiff increases linearly as stiffness decreases.

To effectively leverage both position and stiffness affor-
dances, a geometric mean of both affordances is used to
balance the two objectives. This approach leads to affordance
coupling, which makes increments in one affordance have a
more pronounced impact when the other affordance is also
high. This affordance is visualized in Figure 2 and modeled
as

acombined(s, θ; p) =
√
apos(s, θ; p) · astiff(s, θ; p). (3)

This coupling model improves exploration efficiency and
encourages the agent to select low-stiffness parameters dur-
ing the early stages of training. Furthermore, this method
eliminates the necessity for careful reward weight tuning that
is typically required when directly penalizing high stiffness
values. Such tuning would otherwise need to be conducted
for each new environment, potentially having a detrimental
effect on learning performance [41]. Note that the atomic
and gripper release always have an affordance of 1 due to
their general utility.

B. Adaptive Controller

After the policy selects a primitive and its parameters, the
behavior is executed through a closed loop control scheme.
Using the stiffness parameters outputted by the parameter
policy as an initial estimate of the required stiffness to
complete a given stage of the task, this stiffness is adapted
in real-time using an adaptive stiffness controller. Figure 4

Fig. 2. Heatmap visualization of affordance coupling



shows the adaptive impedance controller integrated within
the low level parametrized policy.

The Adaptive Controller used in this mimics human
muscle stiffness during motion execution [42] by adapting
the stiffness in accordance with the output of

K̇(t) = β|ϵ(t)| − γE, (4)

where ϵ(t) is the closed loop feedback error and E is the
energy consumed by the robot joints, while β and γ scale
these values to influence the stiffness behavior. As for the
corresponding damping matrix, it satisfies a critical damping
condition such that D(t) = 2

√
K(t), which is re-calculated

every time the stiffness value is updated. It is important to
note that interpolation is used to generate intermediate points
along the trajectory toward a target state, which prevents
drastic changes in stiffness.

In practice, the controller stiffness is initialized using the
stiffness output of the low-level RL policy. Then, it calculates
the stiffness at the next step by using β to scale the increase
in stiffness proportional to the feedback error e(s − θ).
Simultaneously, it reduces stiffness by scaling current energy
consumption E with γ. This process yields a net increase or
decrease in the controller’s stiffness. Figure 3 demonstrates
an example in which a robot performs an elliptical wiping
motion.

Since primitives are simple linear movements, the values
of β and γ can be obtained by performing kinesthetic demon-
strations of the primitives, extracting their stiffness profiles,
and minimizing the MSE between the demonstrations and
the controller output. This yields β and γ parameters that
closely resemble human stiffness behavior. Alternatively, the
controller parameters can be determined by simply tuning
them until controller performance is satisfactory.

VI. EXPERIMENTAL RESULTS

In the experiments, we investigated the framework’s learn-
ing efficiency, analyzed its stiffness and force behavior,
highlighted patterns in primitive selection, and evaluated its
performance in a real-world setting. This section is divided
into experimental setup, evaluation in simulation and real

Fig. 3. Example of adaptive stiffness when wiping.

Fig. 4. Adaptive impedance controller integrated within the low-level
parametrized policy.

robot, and comparative analysis with respect to state-of-the-
art method on sequential task execution.

A. Experimental Setup

We evaluated our framework in four contact-rich environ-
ments: Lift, Door, Wipe, and Cleanup. These interactions
include basic object manipulation in the Lift environment,
continuous contact in the Door and Wipe environments, and
a mix of contact and manipulation interactions in the Cleanup
environment. The robot utilized for these experiments was a
Franka Emika Panda in the Robosuite simulator [43] (see
Figure 5) and real-world (see Figure 6). We additionally
apply domain randomization by randomly varying table
friction, table height, object positions, and initial end-effector
position. Lastly, all the reported results were averaged across
5 random seeds.

B. Comparative Analysis - Simulation

We compare our proposed framework with the MAPLE
baseline. The chosen evaluation metrics are Learning Perfor-
mance, Maximum Interaction Force, Compositionality, and
Success Rate.

Evaluation Metrics: In Learning Performance, we exam-
ine learning convergence time to assess learning efficiency

Fig. 5. Simulation Experiments: Lift, Door, Cleanup, Wipe

Fig. 6. Real Experiments: Lift, Cleanup, Wipe



Fig. 7. Comparison of learning behavior and convergence times for various tasks. The rewards are averaged over 20 episodes then normalized between
0 and 1 (which represents the maximum reward at each timestep).

Fig. 8. Variable stiffness behavior demonstrating an emphasis on compliance and stiffness reduction. Each background grid colour represents a different
primitive being executed - grasp, reach, push.

of the proposed framework. In Maximum Interaction Force,
we evaluate our framework’s ability to adapt stiffness across
diferent contexts and its effect on the applied forces. In
Compositionality, we quantify recurring patterns in primitive
selection using a compositionality metric [24]. Lastly, in
Success Rate, we analyze the framework’s ability to consis-
tently achieve the desired task objectives across the different
environments.

Evaluation Results - Learning Performance: We ana-
lyzed convergence times by referring to the learning curves in
Figure 7. Given that our approach and MAPLE use different
affordances, then direct comparisons with MAPLE may
not be appropriate since the reward functions are different.
However, we can still assess convergence times, defined here
as the time taken to learn a near-optimal policy for a given
task.

In the Door environment, both our approach and MAPLE
show approximately equal convergence times. For the Lift
and Cleanup tasks, MAPLE converges slightly faster, possi-
bly due to fewer primitive parameters and less exploration
constraints from affordance coupling. In the Wipe task, our
approach converges much faster, likely due to its ability to
leverage variable stiffness, adapting force behavior to task
requirements.

Evaluation Results - Maximum Interaction Force: We
demonstrate samples of the variable stiffness behavior across
the different environments in Figure 8. We also include a
graph showing the average applied end-effector forces over
a sample of 500 evaluation runs in Figure 9 highlighting
our framework’s ability to finish the task while exerting
less force. These forces were acquired directly from the
simulation environment.

In the Lift and Cleanup environments, both of which are
tabletop settings, Kz is maintained low when interacting

near the table, while Kx and Ky are higher to ensure
precise alignment with the objects of interest. In the Door
environment, Kx is relatively high to provide stability during
initial contact, with Ky increasing as the door handle is
pushed down and all stiffness values decreasing when pulling
the door open. In the Wipe environment, Kx and Ky are low
since the primary action involves contact along the z-axis,
while Kz maintains a higher value to exert enough force for
effective wiping without excessive interaction forces.

This increased compliance results in lower interaction
forces across environments, as shown in Figure 9. Our
approach consistently exerts less force, with lower standard
deviation, implying less sensitivity to task randomization.
The Wipe and Cleanup tasks demonstrate this effect by
showing a pronounced decrease in tabletop impact forces.
Specifically, these forces are reduced when the robot slides
an object along the surface during the Cleanup task and
when it wipes away debris during the Wipe task. Note that
the average force was only calculated across the successful
trials in order to avoid biasing the results, since a robot not
performing any actions generates no interaction forces.

Evaluation Results - Compositionality: We quantify

Fig. 9. Comparison of maximum interaction forces



Fig. 10. Compositionality comparison showcasing the learned sequential behavior. The rows correspond to primtive sequences generated by 5 sample
environment runs.

recurring patterns of primitive choices for solving a given
task using a compositionality metric [24]. A high com-
positionality score reflects the policy’s ability to generate
repeatable behavior sequences to complete a given task.

The compositionality was calculated for a sample of 30
successful environment runs, illustrated in Figure 10. The
Lift task was excluded as it had the same compositionality
score (fcomp = 1), with a grasp and reach primitive sequence.
In the Door task, we share the same number of primitive
executions as MAPLE, but it shows more consistent prim-
itive selection. In the Cleanup task, our approach reduces
the number of primitive executions needed, likely due to
more robust pushing and precise object approach. In the
Wipe environment, our method has more consistent primitive
selection than MAPLE, indicating better understanding of
task requirements.

Evaluation Results - Success Rate: A comparison of
success rates between MAPLE and our method is shown in
Table II. Following training, the simulation and real world
experiments were run 20 times to obtain the success rates. In
the real world experiments, the policy was directly deployed
onto the hardware with no fine-tuning to test the sim2real
capabilities of the framework. MAPLE was not tested in
real-world experiments due to its rigidity and potential oper-
ational hazards. Specifically, if the target state was defined at
a location on or below the table surface, the robot’s motion
would lead to unintended force application and potentially
cause damage to the environment.

Our approach achieves comparable success rates in Lift
and Door tasks, while also improving the safety of the
system due to its higher degree of compliance. In the Cleanup
task, IMP-HRL achieves a slightly lower success rate than
MAPLE. Given that our method prioritizes compliance, this
highlights a tradeoff between safety and success in tasks
requiring precise sequential object manipulation.

As for the Wipe task, our approach achieves double
MAPLE’s success rate. This significant improvement is

TABLE II
SUCCESS RATES (%) FOR SIMULATION AND REAL WORLD

Lift Door Wipe Cleanup
MAPLE

(Simulation)
100.0
± 0.0

100.0
± 0.0

42.0
± 11.7

91.0
± 5.8

Ours
(Simulation)

100.0
± 0.0

100.0
± 0.0

86.0
± 6.2

87.0
± 6.1

Ours
(Real World) 90.0 - 70.0 80.0

attributed to our method’s stiffness control capacity, as
compared to MAPLE’s use of position control. Position
control works for Lift and Door but fails in wiping due to
end-effector rigidity, leading to a misapplication of force or
loss of contact. In contrast, our method ensures consistent
surface contact and preventing excessive or insufficient force
application.

VII. CONCLUSIONS AND LIMITATIONS

This paper presents a hierarchical reinforcement learn-
ing framework aimed at enabling adaptive stiffness con-
trol in sequential contact tasks. It utilizes a pre-defined
library of behavior primitives and equips them with variable
stiffness capabilities. This was done by incorporating an
expanded action space to allow the agent to modify its
stiffness and an adaptive controller for dynamic stiffness
modifications during primitive execution. During training,
we introduce affordance coupling to combine position and
stiffness affordances, which promotes efficient exploration
while incentivizing compliance. The framework showcases
notable results in learning efficiency, variable stiffness con-
trol, compositionality in primitive selection, and success rates
when compared to MAPLE, a state-of-the-art framework
in sequential planning. Furthermore, real-world evaluations
validate the proposed approach’s sim2real capability.

The proposed method faces some limitations. The use
of affordance coupling may limit learning efficiency when
the task relies on accurate manipulation rather than contact
or force interaction. This was evident in the experimental
results for the Lift and Cleanup environments in which our
method required more epochs to learn accurate manipulation.
This can be attributed to the fact that affordance coupling
incentivizes compliance, while manipulation tasks typically
require some degree of stiffness to align the end-effector
with a graspable object accurately. Another limitation lies
in the acquisition of the adaptive stiffness controller pa-
rameters. Specifically, the controller relies on pre-defined
scaling factors (β and γ) that need to be set. They are
acquired either through kinesthetic demonstrations, which
require physical interaction with the robot, or iteratively
tuning β and γ to match the desired performance, which
can be time-consuming.
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